
NOTATION 

t, time; T, temperature; To, ambient temperature; Tm, melting temperature; v, velocity 
of a point in the liquid medium; U, relative velocity of the bodies; p, liquid density, kg/m~; 
c, specific heat of the liquid, J/(m3-K); ~, thermal conductivity coefficient of the liquid, 
W/(m'K); ~, dynamic viscosity, kg/(m.sec); v = ~/p, kinematic viscosity, m2/sec; r, specific 
heat of melting, J/kg; h, thickness of the liquid film; ~, thermal diffusivity coefficient 
of the material of the moving body; s length of the sliding body; b, width of the body. 
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Measurements have been used to test software for calculating the temperature 
pattern in a reinforced medium in the two-temperature approximation and for 
determining model parameters. 

Rod composites are widely used, which requires models that adequately reflect heat trans- 
fer there; the usual approach is based on homogenizing the composite via effective thermo- 
physical characteristics [i]. The errors are very much dependent on obedience to the condi- 
tions for equivalence between a homogeneous medium and the initial heterogeneous one [2], 
which complicates determining the effective thermophysical parameters. The effectivethermal 
conductivity of a heterogeneous material in general is dependent on time [3]. 

An alternative description is the two-temperature conduction model, which avoids those 
difficulties. A representative elementary volume is distinguished, which contains one re- 
inforcing rod in the matrix, and for which one writes averaged conduction equations for each 
component together with Henry's equation, which relates the heat fluxes between the components 
qij to the mean temperatures: 

The correctness of the model has been discussed [4, 5]; it has been used in model treat- 
ments [6, 7]. However, its use is hindered by the lack of data on the thermophysical char- 
acteristics of the components and also ~c. 

Here we present a model for that approach and measurements on the thermal conductivities 
of carbon rods and matrix; temperature patterns as calculated from the approach are compared 
with experiment. 

Model. We consider a material in which the rods can be divided into two groups: ones 
Ln the x-y planes parallel to the surface (denoted by ix-y) and ones parallel to the z 
axis, fz; the spaces between the rods are filled with matrix m. ~ Partial homogenization is 
performed [8] for the fx-y rods and m, and we convert from the multicomponent medium to a 
two-component one. 
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Fig. i. Representative volume for a composite. 

Partial homogenization causes an error in the temperature pattern, but for the carbon- 
rod materials, that error is slight, since published data [9] indicate that X m = Xfi; then 
one can distinguish a representative volume consisting of an fz rod (component I) and the 
homogenized medium, component 2 (Fig. I). The effective radius of the second component is 

in which ~fz is the volume content of the fz fibers. 

The heat propagation in this cylinder with boundary conditions of the first kind is 
described on the basis of the symmetry by 

a k,~ + k , i T / 4  = c i - -  , 
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We introduce the temperature ~i averaged over the cross section of component i: 

R e 

We integrate (2) within each component with weight r and use (7) and (i) to get 

O k~i --ci = ( - -  1) ~ + ~ i  = 
az -52 /  -5 -  ' 

in which =i = 2=c/Rj; =2 = 2=cR! / (R  2- R~). 

We w r i t e  the  i n i t i a l  and boundary c o n d i t i o n s  for  ( 2 ' )  by i n t e g r a t i n g  by analogy wi th  
(3)-(5): 
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Fig. 2. Relative temperature of reverse surface of 
specimen 8 (2) and thermal diffusivity ap (i) as time 
functions; ap in m2'sec and t in sec. 

System (2')-(5') describes the temperature pattern on the basis of the nonlinearity in the 
component characteristics for nonstationary boundary conditions. 

These transformations reduce the dimensions from two to one and minimize the number of 
material characteristics: 

Mo(~.=i, ~.~.i, ci, i = 1 ,  2; RT)-+Mz(~,~i, ci, i = 1 ,  2; ac ) .  

The heat-transfer coefficient =c between rods and matrix is an integral characteristic, and 
it is evident that =c = f(Iri, i = i, 2; RT). 

Finite differences [I0] are used to solve (2')-(5'); the inexplicit difference algorithm 
was used with a uniform net and step h in the coordinate and step At in time as 

(T~) (T~:+~ -- _,, , -- (T~: -- ~:) = h~ 

^ 5 ^ 5  ^ S  "~ - -  ~,~ (~r~) (~e~/+' _ T~+',)1 - -  Atai  (T~)(T, i - -  T 2 i ) ( - -  I)'+~, i = 1, 2, 

in which 

with s the number of the iteration, j the number of the coordinate step, and n the number 
of the time step. 

The system is solved iteratively, with the check on the accuracy from 

i 

in which ~ is the set accuracy. 

That algorithm has been implemented in the SOSTK Fortran IV program for the ES com- 
puters; the run time was on average 5 min. Tests against the exact analytic solution [5] 
indicate an error of not more than 1%. 

A typical composite as described below was used to evaluate the performance. 

The composite consisted of carbon rods immersed in a carbon sinter (matrix); each rod 
consisted of several thousand carbon fibersalso impregnated with the sinter. To a first 
approximation, the rods may be considered as homogeneous. In the x-y plane, there are 
three rows of fx-y rods displaced by 60 ~ one relative to another, together with one row of 
rods parallel to the z axis, fz" The rod diameter 2Rf = 1.2 mm, calculated geometrical value 

Vfz = 0.17. 
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Fig. 3. Temperature dependence of thermal 
conductivities: i) izl; 2) ~; 3) Ip; 4) 

Iz2. I, W/(m-K); T, K. 

Parameter Determination. The temperature pattern may be determined from the set of 
characteristics M2(Izl , Iz2 , ci, c2, ac)" 

The specific heats of the fibers and matrix (sinter) may be taken as the same as that 
of graphite [ii] because the specific heat is governed by the composition. The component 
densities were calculated from 

3 3 
'It 

P2 = !z . .PsVsi  - -  vS~ - - P j j , ( 1 - - v s ~ ) ,  Pl PS" 

Here vfi is the volume proportion of the rod group fx-y, i = i, 2, 3, which can be trans- 
formed-to 

3 

[ ( ) j P 2 = P / @  Ap l i=1 - -Pro  P 
1 - - v i ~  . 1 - - v f z  

(8) 

in which 5p = Pm - Pf: estimates show that the terms in the square brackets are small in 
magnitude and are opposite in sign, so one can write P2 = Pf with an error of not more than 
5%. 

The component conductances were determined with a Sinku-Riko commercial pulse system, 
which employs Parker's method [12]. Aspects of using such a technique with composites have 
repeatedly been discussed [13, 14], but a realistic method of processing the data has been 
given only in [15]. Disadvantages are the need to use several specimens differing in thick- 
ness and the lack of a rigorous theoretical basis. We employed a method based on solving 
the inverse coefficient problem (SONDI), which used the pulse results to determine Izl , 
iz2, and a c [16]. 

The SONDI treatment was evaluated on a test case for steel reinforced with copper wire 
(diameter -i m m) along the heat treatment direction. For a specimen of standard diameter 
~i0 n~n, we were able to place seven reinforcing rods (Vfz = 0.07). The test data gave thermal 
conductivities of 340 and 39.9 W/m'K for copper and steel correspondingly at 600 K, which 
differ from reference data by not more than 10%. Then the effective thermal conductivity is 

~=k=ivfz+ ~2 (1--vfz) (9) 

which is used to determine the effective thermal diffusivity 

 =Lg 

in which c = ci~fz + c2(l--~fz). 
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Fig. 5. Comparison of measurements with numerical data 
for depths of i) z = 0; 2) 5.2; 3) 8.5; points from 
experiment, dot-dashed curves from two-temperature 
model, solid lines from one-temperature model. 

Figure 2 shows the relative temperature at the back surface 8 as a function of time and 
the corresponding variation in the thermal diffusivity ap(t) calculated by Parker's method 
[12]; the exact value of the diffusivity & is much higher than the ~p(t0, 5) used in practice. 

We then performed tests on the composite (diameter ~10 mm, thickness -2-3 mm), where 
Fig. 3 shows %zz(T), lzz(T) derived from the SONDI treatment, as well as the %(T) from (9) 
and l- = ~p(t0,5)c, the effective thermal conductivity of the composite as determined as in 
[12]. ~ Here we obtained a result analogous to that discussed above: ~ > lp(t0, 5) throughout 
the temperature range. 

There are systematic measurement errors due to inhomogeneity in the laser pulse dis- 
tribution and a size of -4 nnnfor the pyrometer spot, and also uncertainty over P2, which 
reduced the accuracy considerably: 6~zz ~ i0%, 6~g 2 ! 12%, 6~ c ! 18%. 

Experimental Results. To evaluate the model, we tested it with a high-enthalpy gas flow 
(Fig. 4) used at the surface of a cylindrical flow system (i) composed of the composite (2). 
At various distances from that surface, there were thermocouples (3) of VR5/20 type having 
yttrium oxide insulation. The thermocouple readings were processed by the apparatus 4, 
telemetry system 5, and computer 6. The over-all measurement error did not exceed 12%. 

The temperature pattern was simulated in two ways: by solving the one-temperature case 
for nonlinear thermal conductivity with effective values %p + T and via the SOSTK treatment P 
for the approach to T D by the use of a set of derived model parameters:{%zl , lz2, ec} (with 
geometrical extrapolation for the Fig. 3 data to 3200 K). Figure 5 compares the experimental 
T e with the calculated Tp and tT D for various depths; TD(Z, t) was much closer to the mea- 
sured values, error not more than 10%, which is within the experimental error. The largest 
differences between the calculated values occurred at the boundary. Proper correction for 
the working conditions (oblation, cylindrical geometry, and so on) reduces the differences 
between the observed and theoretical results. 

Conclusions. This software simulates heat transfer in reinforced media and consists of 
the SONDI program, which processes test data, and the SOSTK program, which solves the coupled 
nonlinear thermal-conduction equations. 
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NOTATION. T i and ~i, temperature and mean temperature over the cross section for com- 
ponent i; qij heat flux density from component i to component j; ci, Pi, Xri, Xzi specific 
heat, density, and radial and axial thermal conductivities correspondingly; ~c and R T, heat- 
transfer coefficient and contact thermal resistance between components; ~g0 (~gH), heat-trans- 
fer coefficient between gas and composite; Tg 0 (TgH) , gas temperature; Rf rod radius. 
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Results are presented from an experimental study of specific heat of the super- 
conductive metal oxide system Bi--Sr--Ca--Mg--Cu--O over the temperature range 
4.2-300 K. Temperature-dependent components of entropy and enthalpy are cal- 
culated. A correlation is made between T c and standard entropy and enthalpy 
values for high temperature superconductors of various classes. 

There is a current trend toward deeper study of high temperature superconductor (HTSC) 
materials in order to accumulate information on this phenomenon, the physical nature of 
which is still unclear. In this respect the thermodynamic characteristics and their standard 
values are important for constructing phase diagrams in various coordinate systems, determin- 
ing the character of phase transitions, etc. [1-3]. Such data are very lacking for HTSC 
materials [4-6]. 
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